首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227358篇
  免费   18781篇
  国内免费   9486篇
电工技术   13982篇
技术理论   16篇
综合类   13607篇
化学工业   35692篇
金属工艺   13808篇
机械仪表   14114篇
建筑科学   14942篇
矿业工程   6092篇
能源动力   5568篇
轻工业   13006篇
水利工程   4667篇
石油天然气   12564篇
武器工业   1834篇
无线电   24717篇
一般工业技术   33269篇
冶金工业   13426篇
原子能技术   5676篇
自动化技术   28645篇
  2023年   3299篇
  2022年   6352篇
  2021年   9258篇
  2020年   7060篇
  2019年   5773篇
  2018年   7191篇
  2017年   7767篇
  2016年   7170篇
  2015年   8640篇
  2014年   10972篇
  2013年   13256篇
  2012年   14533篇
  2011年   15530篇
  2010年   13214篇
  2009年   12765篇
  2008年   12486篇
  2007年   11592篇
  2006年   10817篇
  2005年   9122篇
  2004年   6705篇
  2003年   6092篇
  2002年   6012篇
  2001年   5336篇
  2000年   4714篇
  1999年   4174篇
  1998年   3279篇
  1997年   2733篇
  1996年   2485篇
  1995年   2105篇
  1994年   1770篇
  1993年   1467篇
  1992年   1397篇
  1991年   1181篇
  1990年   1180篇
  1989年   1073篇
  1988年   961篇
  1987年   869篇
  1986年   785篇
  1985年   739篇
  1984年   709篇
  1982年   679篇
  1981年   677篇
  1979年   743篇
  1978年   777篇
  1977年   742篇
  1976年   764篇
  1975年   716篇
  1974年   720篇
  1973年   724篇
  1972年   706篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.  相似文献   
32.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
33.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
34.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
35.
The recycling of solid waste is a win-win solution for humans and nature. For this purpose, magnesite tailings and silicon kerf waste were employed to prepare MgO–Mg2SiO4 composite ceramics by solid-state reaction synthesis in the present work. Then, effects of sintering temperature and raw material ratio on as-prepared ceramics were systematically studied. As-prepared ceramics showed improvement in their relative density (from 47.55%–68.12% to 90.96%–95.25%) and cold compressive strength (from 7.34–118.66 MPa to 303.39–546.65 MPa) with the increase in sintering temperature from 1300 to 1600 °C. In addition, it was found that Si promoted synthesis process of Mg2SiO4 phase through transient liquid phase sintering and Fe2O3 accelerated sintering process through activation sintering. Consequently, the presence of Mg2SiO4 phase effectively improved the density and strength of MgO–Mg2SiO4 composite ceramic, while reducing its thermal conductivity. This work provides a potential reutilization strategy for magnesite tailings, and as-prepared products are expected to be applied in fields of construction, metallurgy, and chemical industry.  相似文献   
36.
Ceria-based solid solutions are important materials for high- and medium-temperature electrochemical applications. However, the stabilities of both binary and ternary ceria-based solid solutions are insufficient at elevated temperatures, which limits their application as solid electrolytes or SOFC cathodes. Data on the high-temperature stability of ceria-based ceramics are unavailable in the literature. In the present study, we report a thermodynamic stability investigation of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions. The thermal prehistories of binary and ternary systems were investigated using STA, XRD, and ESCA techniques. The vaporization processes were investigated in the temperature range of 1577–2227°С via the Knudsen effusion mass spectrometry technique. Using data on the component activity in solid-phase thermodynamic properties of Y2O3-CeO2 solid solutions, which is represented as the Gibbs energy, the excess Gibbs energy was calculated as a function of the ceria mol. %. It was shown that the reduction of Ce4+ to Ce3+ in Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions corresponds to less-negative Gibbs energy compared to ZrO2-CeO2 solid solutions.  相似文献   
37.
38.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
39.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
40.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号